Discriminative training using the trusted expectation maximization
نویسندگان
چکیده
We present the Trusted Expectation-Maximization (TEM), a new discriminative training scheme, for speech recognition applications. In particular, the TEM algorithm may be used for Hidden Markov Models (HMMs) based discriminative training. The TEM algorithm has a form similar to the ExpectationMaximization (EM) algorithm, which is an efficient iterative procedure to perform maximum likelihood in the presence of hidden variables [1]. The TEM algorithm has been empirically shown to increase a rational objective function. In the concave regions of a rational function, it can be shown that the maximization steps of the TEM algorithm and the hypothesized EM algorithm are identical. In the TIMIT phone recognition task, preliminary experimental results show competitive optimization performance over the conventional discriminative training approaches (in terms of speech and accuracy).
منابع مشابه
Discriminative training of GMM using a modified EM algorithm for speaker recognition
In this paper, we present a new discriminative training method for Gaussian Mixture Models (GMM) and its application for the text-independent speaker recognition. The objective of this method is to maximize the frame level normalized likelihoods of the training data. That is why we call it the Maximum Normalized Likelihood Estimation (MNLE). In contrast to other discriminative algorithms, the o...
متن کامل4.1 Overview
In this lecture, we will address problems 3 and 4. First, continuing from the previous lecture, we will view BaumWelch Re-estimation as an instance of the Expectation-Maximization (EM) algorithm and prove why the EM algorithm maximizes data likelihood. Then, we will proceed to discuss discriminative training under the maximum mutual information estimation (MMIE) framework. Specifically, we will...
متن کاملDiscriminative training of HMM using maximum normalized likelihood algorithm
In this paper, we present the Maximum Normalized Likelihood Estimation (MNLE) algorithm and its application for discriminative training of HMMs for continuous speech recognition. The objective of this algorithm is to maximize the normalized frame likelihood of training data. Instead of gradient descent techniques usually applied for objective function optimization in other discriminative algori...
متن کاملA discriminative training algorithm for Gaussian mixture speaker models
The Gaussian mixture speaker model (GMM) is usually trained with the expectation-maximization (EM) algorithm to maximize the likelihood (ML) of observation data from an individual class. The GMM trained based the ML criterion has weak discriminative power when used as a classifier. In this paper, a discriminative training procedure is proposed to fine-tune the parameters in the GMMs. The goal o...
متن کاملSemi-Supervised Training for Statistical Word Alignment
We introduce a semi-supervised approach to training for statistical machine translation that alternates the traditional Expectation Maximization step that is applied on a large training corpus with a discriminative step aimed at increasing word-alignment quality on a small, manually word-aligned sub-corpus. We show that our algorithm leads not only to improved alignments but also to machine tra...
متن کامل